您好,欢迎来到ub情感网。
搜索
您的当前位置:首页高三数学的工作总结(5篇)

高三数学的工作总结(5篇)

来源:ub情感网

高三数学的工作总结

  20__高考,是中牟二高向前迈进发展的契机,数学承载着高考成败的半壁江山。所以,20__高考,我组的备考信念是“必成不败”。首先,我们通过认真研讨,制定出了详细的备考计划。

  教学进度计划

  第一周(7.31——8.6) 第一章 集合与常用逻辑用语

  第二周(8.7——8.13)第二章 函数概念及基本初等函数

  第三周(8.14——8.20)

  第四周(8.21——8.27) 第三章 导数及其应用

  第五周(8.28——9.3)

  第六周 (9.4——9.10) 第四章 三角函数 解三角形

  第七周(9.11——9.17)

  第八周(9.18——9.24)第五章 平面向量与复数

  第九周(9.25——10.1)

  第十周(10.2——10.8)

  第十一周(10.9——10.15)第六章 数列

  第十二周(10.16——10.21)第七章 不等式 第八章 立体几何

  第十三周(10.22——10.29)

  第十四周(10.30——11.5)立体几何

  第十五周(11.6——11.12)

  第十六周(11.13——11.19)第九章 平面解析几何

  第十七周(11.20——11.26)

  第十八周(12.27——12.3)

  第十九周(12.4——12.10)统计与统计案例 (文:概率,古典概型,几何概型)

  第二十周(12.11——12.17) 随机变量及其分布(文:4—4)

  第二十一 (12.18——12.24)理科4-4 文科4-5

  第二十二周(12.25——12.31)迎一测备考

  第二十三周 (1.1-1.7)

  第二十四周 (1.8-1.14)

  第二十五周 (1.15-1.21)一测考试

  备考建议

  近几年高考显著特点是注重基础,从学生情况来看,平时学习不错但不得高分的主要原因不在于难题没有做好,而在于基本概念不清,基本方法不熟,解题过程不规范。因此在一轮复习要做到:

  (1) 注重课本的基础作用与考试说明的导向作用。在每一节复习之前最好先领着学生将课本上的重要知识点与习题过一遍。

  (2) 加强主干知识的生成,重视知识的交汇点。每章结束时要做好知识构建。形成知识框架。

  (3) 复习过程,通过作业,习题,考试等,规范学生解题习惯,演草习惯。

  (4) 督促学生做好笔记,错题集。加强题后反思,让学生学会总结。

  (5) 教师将近五年的高考题分类整理,在每一章开始时,在一课一研时先共同探究本章节的高考动向。

  以上是一测备考的数学教学工作的大致安排计划,为确保一测顺利完成任务,当下我们备课组全体成员务必做好以下几点:

  (1)每个成员认真备好课后方可进行一课一研,主讲人先谈本节课的教学设计,其余成员进行补充。

  (2)对于课本,考试说明在每一章开始时要一块进行研讨,避免做无用功。

  (3)每一节习题,例题,课时作业。教师务必先做,大胆舍去没有价值的习题,有价值的题目可以适当变式,教师一块探讨。

  (4)一轮复习每节课基本都要配备作业,要让学生按时交作业,认真批改,及时发现问题。

  (5)对于试卷质量,严格把关,每个人出试卷前先将本章试卷的知识点列出,在一课一研时,研讨后根据知识清单找习题。

  (6)备课组全体成员提高做题量,做题能力,在备课之余多做高考题,提升能力同时,为精选习题提供精品题。

高三数学的工作总结

  本学年本人担任高三年组数学教师,教课班级为4班、7班和27班三个班级,随着高考的结束,本学期教学任务结束,我所教三个班都是普通班或复习班,学生的基础普遍是偏差的。高考数学试卷的特点是难度大,区分度大,高考所占权重大,数学也是高三学生最重视的学科。高三数学的教学直接关系着全校考生高考的成绩,数学教师的责任是重大的。下面就以下四点对本学期的教学工作进行总结:

  一、任课班情

  本学期所教授的三个班级具体班情各不相同:4班是普通文班,班主任是黄立学老师;7班是普通理班,班主任是刘永贺老师;27班是补习文班,班主任是陈秀娟老师。由于本人工作时间短的原因,在本学年之前,没有过文科班班级以及补习班班级授课经验,所以本学年尤其是刚开始的时候,面临着不小的压力与挑战,好在授课班级的三位班主任老师对工作积极负责,在工作上给予了我非常大的帮助,使我能短期内迅速适应班级特点,开展教学工作。

  二、任课学情

  我所教的三个班级,27班是文科补习班,相对学生比较重视该科,上课的时候比较认真,大部分学生都能专心听讲,课后也能认真完成作业。但是教授补习班就应该为学生的升学负责,他们之所以选择了复读,就是为了考取一个更好的大学,为此我们责无旁贷。对此,我狠抓学风,在班级里提倡一种认真、求实的学风,严厉批评抄袭作业的行为。与此同时,为了提高同学的学习积极性,开展了学习竞赛活动,在学生中兴起一种你追我赶的学习风气;4班是一个普通文班,本班数学底子很是不好,先后换过三任数学教师,但是本班有几名学生智力、反映都很不错,为此如何提升他们的成绩,以此调动班级成绩,是本学年的一个问题。另外,本班由于差生面太大了,后进生基础太差,考试成绩都很差,有些同学是经常不及格,调动提高他们的学习积极性、提升他们的数学成绩,是本学期工作的重难点;7班是普通理班,接手之前成绩也一直不太理想,分析原因,是因为本班学生成绩分化严重,形成了明显的几个梯队:学习靠前的梯队整体成绩都不错,但没有十分拔尖的学生。后续梯队干劲明显不足,被前面的同学落下了很大一截。后进生对学习数学的兴趣不高,因此如何提高后进生的学习兴趣,拉近梯队间差距,成为本班的工作要点。

  三、任课教情

  对于27班,由于班级学风相对不错,本班的工作主要是巩固基础知识,并提高做题的量与难度,在与普通班一样完成正常的教学任务之外,我还组织他们做了对应的数学报纸,并且进行了讲解。在平时的时候,注重培养学生高考的`读题解题能力,期望他们能在20xx年的高考中取得更好的成绩;对于4班,我的具体措施是找同学适当的谈心,让学优生之间互相竞争,以此来带动整个班级的数学学习气氛,对于后进生尤其是艺体特长生,我尽可能的发现他们的闪光点,及时给予表扬,课下经常与他们谈心,帮助他们明确学习目的,从学习上主动辅导他们,使他们不断进步,变被动学习为主动学习,让他们更有自信心;对于7班,学优生的问题不大,在他们学习松懈的时候,给予适当的提醒就可以了,关键难点在于如何提高后进生的学习积极性,拉近梯队间的差距。为此,我采取的措施是适当放慢本班的教学进度,尽可能更翔实明确的教学生如何读题、如何解体,注重学生做题及运算的能力培养,使大部分学生学习不掉队,后进学生不放弃。

  四、教学具体措施

  1、注重培养学生做选择填空题的能力

  虽然高考中选择填空题占了80分,但它难度不是很大,高考考它们的方向是基础与全面,为顾及到各层次的考生(包括艺术类,体育类考生)高考一定要考基础,考试的知识点覆盖率应该尽量大,这些设计目标由选择填空题来完成。以它的目的来看,选择填空题的难度不应该大,一张卷有2-3道难度大的题就足够了,因此做好选择填空,是大部分学生得高分的关键因素。所以复习时,我注重培养学生自己的数学读题解题能力。选择填空题往往有一些技巧解法,如排除法,特值法,代入数值计算,从极端情况出发,等等,我除了在平时的训练,还作了选择填空题的专题训练以提高学生的解题技巧。从今年的高考实际看,选择填空题的难度不大,得满分的不少。

  2、重视解答题。

  我们在复习中提出重视解答题,同时不能丢了选择填空题,一定要求学生努力做解答题。因为从历年的高考看,高分学生成绩的好坏最终取决于解答题。所以在实际教学中我侧重解答题的教学,用较多的时间分析讲解解答题,给学生充分的时间去做解答题,如复习立体几何或解析几何时减少习题数量,每天就要求学生就作3-4道解答题,对学生区别要求,差一些的学生可以再少做一些,鼓励学生一定要努力做解答题。

  3、握好高考的方向。

  高考试卷的型式:22道试题,12道选择题,4道填空题,6道解答题,各题的得分比例都与去年的考试中心的命题试卷雷同。各章考查知识点在试卷中的比率与6个解答题的考查方向,都与去年考试中心的试卷的相似。我就是以这样的思想来指导高考复习。也就是说以去年的考试中心的6道解答题主要考查方向是我们复习的主攻方向。其中,数列与三角的题目没有办法预测,我们都进行了大量的训练,结果也是很不错,今年的文理试卷分别各考了一道大题,学生没有因为没复习到而影响高考的发挥。唯一遗憾的是,以往每年的不等式题,都是以解不等式的形式出题,今年一反常规,考了不等式的证明,我们在最后的三轮复习中,相对练的较少,部分学生答题出现困难。这更提醒我们在今后的教学中要更加深入的研究高考方向。

高三数学的工作总结

  不等式的解集:

  ①能使不等式成立的未知数的值,叫做不等式的解。

  ②一个含有未知数的不等式的所有解,组成这个不等式的解集。

  ③求不等式解集的过程叫做解不等式。

  不等式的判定:

  ①常见的不等号有“>”“<”“≤”“≥”及“≠”。分别读作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

  ②在不等式“a>b”或“a

  ③不等号的开口所对的数较大,不等号的尖头所对的数较小;

  ④在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等等。

高三数学的工作总结

  三角函数。

  注意归一公式、诱导公式的正确性。

  数列题。

  1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

  2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的`式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

  3、证明不等式时,有时构造函数,利用函数单调性很简单

  立体几何题。

  1、证明线面位置关系,一般不需要去建系,更简单;

  2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;

  3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。

  概率问题。

  1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

  2、搞清是什么概率模型,套用哪个公式;

  3、记准均值、方差、标准差公式;

  4、求概率时,正难则反(根据p1+p2+……+pn=1);

  5、注意计数时利用列举、树图等基本方法;

  6、注意放回抽样,不放回抽样;

  正弦、余弦典型例题。

  1、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为

  2、已知α为锐角,且,则α的度数是A、30°B、45°C、60°D、90°

  3、在△ABC中,若,∠A,∠B为锐角,则∠C的度数是A、75°B、90°C、105°D、120°

  4、若∠A为锐角,且,则A=A、15°B、30°C、45°D、60°

  5、在△ABC中,AB=AC=2,AD⊥BC,垂足为D,且AD=,E是AC中点,EF⊥BC,垂足为F,求sin∠EBF的值。

  正弦、余弦解题诀窍。

  1、已知两角及一边,或两边及一边的对角(对三角形是否存在要讨论)用正弦定理。

  2、已知三边,或两边及其夹角用余弦定理

  3、余弦定理对于确定三角形形状非常有用,只需要知道角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。

高三数学的工作总结

  (1)先看“充分条件和必要条件”

  当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。

  但为什么说q是p的必要条件呢?

  事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

  (2)再看“充要条件”

  若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作pq

  (3)定义与充要条件

  数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

  显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

  “充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。

  (4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- ubii.cn 版权所有

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务